Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Sodium magnesium bis(vanadate) pyrovanadate: $\mathbf{N a}_{\mathbf{6}} \mathbf{M g}_{\mathbf{2}}\left(\mathrm{VO}_{\mathbf{4}}\right)_{\mathbf{2}}\left(\mathrm{V}_{\mathbf{2}} \mathrm{O}_{7}\right)$

Alexander Mitiaev, Andrei Mironov, Roman
Shpanchenko* and Evgeny Antipov

Department of Chemistry, Moscow State University, Leninskie Gory, 119992 Moscow, Russia
Correspondence e-mail: shpanchenko@icr.chem.msu.ru

Received 5 January 2004
Accepted 8 March 2004
Online 9 April 2004

The crystal structure of the new complex vanadium oxide $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$ was solved from X-ray single-crystal data. The structure contains VO_{4} tetrahedra and MgO_{6} octahedra, linked by corners and forming a complex threedimensional framework. A half of the VO_{4} tetrahedra are connected only to MgO_{6} octahedra, whereas the others are corner-sharing, forming $\mathrm{V}_{2} \mathrm{O}_{7}$ pyrovanadate groups with statistically random orientations. One unique Mg atom is located at an inversion centre, while the other Mg atom, one unique V atom and five unique O atoms lie on mirror planes.

Comment

Complex vanadium oxides have drawn the attention of researchers because of the possible application of these compounds as secondary current sources and catalysts in oxidation processes (Zavalij \& Whittingham, 1999; Schindler et al., 2000). The existence of a variety of vanadium oxidation states and coordination polyhedra gives numerous opportunities for the synthesis of new compounds.

To date, only two compounds have been reported in the $\mathrm{Na} /$ $\mathrm{Mg} / \mathrm{V} / \mathrm{O}$ system. The crystal structure of $\mathrm{NaMg}_{4}\left(\mathrm{VO}_{4}\right)_{3}$ (Murashova et al., 1988) contains isolated $\mathrm{V}^{5+} \mathrm{O}_{4}$ tetrahedra and MgO_{6} octahedra, linked in a three-dimensional framework. Na and Mg atoms adopt ordered positions in the structural interstices. The crystal structure of $\mathrm{Na}_{6} \mathrm{Mg}_{3} \mathrm{~V}_{4} \mathrm{O}_{16}$ (Slobodin et al., 1987) is unknown; moreover, the X-ray diffraction powder pattern of this compound was not indexed.

The crystal structure of the title compound is shown in Fig. 1. The three-dimensional framework is built up of corner-sharing $\mathrm{V}^{5+} \mathrm{O}_{4}$ tetrahedra and MgO_{6} octahedra. The MgO_{6} octahedra are close to regular, with $\mathrm{Mg}-\mathrm{O}$ bonds in the range 2.072 (2)2.248 (2) \AA (Table 1), and every octahedron is corner-linked to six VO_{4} tetrahedra. Atoms $\mathrm{Na} 1, \mathrm{Na} 2$ and Na 3 have five $\mathrm{O}-$ atom neighbours, and atom Na 4 has six, the $\mathrm{Na}-\mathrm{O}$ range of bond lengths being 2.288 (3)-2.668 (3) A.

There are three symmetry-independent vanadium sites in the structure, all of which are tetrahedrally coordinated and contain V^{5+} cations. The bond-valence sums (BVSs) for the V1-, V2- and V3-atom positions are $5.05,5.18$ and 4.77, respectively. The ${\mathrm{V} 1 \mathrm{O}_{4}}^{4}$ and $\mathrm{V} 2 \mathrm{O}_{4}$ tetrahedra are essentially undistorted and have four $\mathrm{V}-\mathrm{O}$ distances close to $1.70 \AA$, which is typical for vanadate groups. The $\mathrm{V} 3 \mathrm{O}_{4}$ tetrahedron is strongly distorted, with a noticeable elongation of the V3-O9 bond length to 1.933 (3) A. Atom V3 partially (0.5) occupies an $8 d$ site, which results from the splitting of a $4 c$ site along the b axis, the separation between atoms $\mathrm{V} 3 a$ and $\mathrm{V} 3 b$ being 1.064 (1) \AA. Only one of the two $\mathrm{V} 3 \mathrm{O}_{4}$ tetrahedra can be occupied at any one time.

All tetrahedra in the structure are corner-linked. The $\mathrm{V} 1 \mathrm{O}_{4}$ tetrahedron has four neighbouring MgO_{6} octahedra, while the $\mathrm{V} 2 \mathrm{O}_{4}$ group shares three corners with MgO_{6} octahedra and one with a $\mathrm{V3O}_{4}$ tetrahedron. The latter is also connected to two $\mathrm{Mg}_{1 \mathrm{O}}^{6}$ octahedra. The coordinating atom, O 2 , belongs only to the ${\mathrm{V} 3 \mathrm{O}_{4}}$ tetrahedron. Fig. 2 shows that the cornerlinked $\mathrm{V} 2 \mathrm{O}_{4}$ and $\mathrm{V} 3 a \mathrm{O}_{4}$ (or $\mathrm{V} 3 b \mathrm{O}_{4}$) tetrahedra together form randomly oriented $\mathrm{V}_{2} \mathrm{O}_{7}$ pyrovanadate groups. Hence, the structural formula for the title compound can be written as $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$.

The random orientation of the pyrovanadate groups explains the statistical populations of the coordinated Na 3 and Na4 sites, which are only half occupied. We suggest that in each particular unit cell these atoms should be situated opposite to any of the $\mathrm{V} 3 a \mathrm{O}_{4}$ or ${\mathrm{V} 3 b \mathrm{O}_{4}}^{\text {tetrahedra present in }}$ the structure.

Although a trigonal bipyramidal coordination can be realized for a V^{5+} cation, no such configuration is realized in the $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$ structure. A shift of atom V 3 to the

Figure 1
The crystal structure of $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$.
centre of the $\mathrm{O} 4 / \mathrm{O} 2 / \mathrm{O} 5$ plane of a hypothetical bipyramid ($4 c$ position) results in enormous $\mathrm{V}-\mathrm{O} 9$ distances ($\sim 2.46 \AA$), which can be considered to be non-bonding. A BVS calculation indicates a vanadium oxidation state of +5.46 for this configuration, which is much higher than the maximum possible vanadium valence.

The crystal structure of $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$ is similar to that of $\mathrm{Na}_{2} \mathrm{Ca}_{6}\left(\mathrm{SiO}_{4}\right)_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)$ (space group $P 2_{1} / c$; Armbruster \& Roethlisberger, 1990). The latter has a monoclinic lattice with cell parameters close to those of $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$. In contrast to the title structure, $\mathrm{Na}_{2} \mathrm{Ca}_{6}\left(\mathrm{SiO}_{4}\right)_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)$ has one SiO_{4} tetrahedra, the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups are arranged in an orderly manner and the A cations (Na and Ca) jointly occupy their positions.

Figure 2
Two possibilities for $\mathrm{V}_{2} \mathrm{O}_{7}$-group orientation. $\mathrm{Mg} 2 \mathrm{O}_{6}$ octahedra and $\mathrm{V}_{2} \mathrm{O}_{4}$ tetrahedra are shown as filled polyhedra. Na atoms are not shown. O atoms marked with an asterisk (*), as well as V3a and V3b, are mutually related by the ($x, \frac{1}{2}-y, z$) mirror plane.

The theoretical X-ray powder pattern for $\mathrm{Na}_{6} \mathrm{Mg}_{2} \mathrm{~V}_{4} \mathrm{O}_{15}$, calculated from single-crystal data, coincides with the powder data reported by Slobodin et al. (1987), who assumed the composition $\mathrm{Na}_{6} \mathrm{Mg}_{3} \mathrm{~V}_{4} \mathrm{O}_{16}$. Taking into account the similarity of the two compositions, we assert that the formula of the incompletely characterized phase was actually $\mathrm{Na}_{6} \mathrm{Mg}_{2} \mathrm{~V}_{4} \mathrm{O}_{15}$.

Experimental

A single-phase powder sample was obtained by the solid-state reaction of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MgO}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$. Before weighing, MgO was dried in a dynamic vacuum at 773 K to eliminate water. The starting materials were mixed in an agate mortar, ground under acetone, pressed into pellets and annealed in air at 773 K for 36 h . Single crystals of $\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$ were obtained by melting the powder sample and then cooling it slowly in a furnace.

Crystal data

$\mathrm{Na}_{6} \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$
$M_{r}=630.3$
Orthorhombic, Pnma
$a=17.080$ (3) A
$b=14.6910(18) \AA$
$c=5.5356(7) \AA$
$V=1389.0(3) \AA^{3}$
$Z=4$
$D_{x}=3.013(1) \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 23 reflections
$\theta=17.6-20.4^{\circ}$
$\mu=2.97 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Arbitrary, colourless
$0.23 \times 0.09 \times 0.07 \mathrm{~mm}$

inorganic compounds

Data collection: CAD-4 Manual (Enraf-Nonius, 1988); cell refinement: CAD-4 Manual; data reduction: CSD (Akselrud et al., 1993); program(s) used to solve structure: $C S D$; program(s) used to refine structure: JANA2000 (Petricek \& Dusek, 2000); molecular graphics: ATOMS (Dowty, 1998); software used to prepare material for publication: JANA2000.

The authors are grateful to ICDD (grant-in-aid APS91-05) for financial support and M. Kovba for help in the synthesis experiment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1039). Services for accessing these data are described at the back of the journal.

References

Akselrud, L. G., Zavaliy, P. Y., Grin, Yu. N., Pecharsky, V. K., Baumgartner, B. \& Wolfel, T. (1993). Mater. Sci. Forum, 133-136, 335-340.
Armbruster, T. \& Roethlisberger, F. (1990). Am. Mineral. 75, 963-969.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-153.
Dowty, E. (1998). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.
Murashova, E. V., Velikodnuyi, Y. A. \& Trunov, V. K. (1988). Zh. Strukt. Khim. (USSR), 29, 182-184.
Petricek, V. \& Dusek, M. (2000). JANA2000. Institute of Physics, Prague, Czech Republic.
Schindler, M., Hawthorne, F. C. \& Baur, W. H. (2000). Chem. Mater. 12, $1248-$ 1259.

Slobodin, B., Sharova, N., Ust'yantsev, V. M. \& Kiseleva, N. V. J. (1987). Zh. Neorg. Khim. (USSR), 32, 1473-1475.
Zavalij, P. \& Whittingham, M. S. (1999). Acta Cryst. B55, 627-663.

